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1. Introduction 

The empirical Bayes approach in statistical decision theory is appropriate when one 

is confronted repeatedly and independently with the same decision problem. In such 

instances, it is reasonable to formulate the component problem in the sequence as Bayes 

decision problems with respect to an unknown prior distribution on the parameter space, 

and then use the accumulated observations to improve the decision rule at each stage. 

This approach is due to Robbins (1956, 1964, 1983). During the last twenty-five years, 

empirical Bayes methods have been studied extensively. Many such empirical Bayes rules 

have been shown to be asymptotically optimal in the sense that the risk for the nth decision 

problem converges to the minimum Bayes risk which would have been obtained if the prior 

distribution was known and the Bayes rule with respect to this prior distribution was used. 

Empirical Bayes rules have been derived for subset selection goals by Deely (1965). 

Recently, Gupta and Hsiao (1983) and Gupta and Leu (1983) have studied empirical 

Bayes rules for selecting good populations with respect to a standard or a control with 

the underlying distributions being uniformly distributed. Gupta and Liang (1986a, 1987) 

studied empirical Bayes rules for selecting binomial populations better than a standard 

or a control and for selecting the best among several binomial populations. In the above- 

montionod papers, the authors have assumed that the form of the prior distribution is 

completely unknown. Hence, those approaches are referred to as nonparametric empirical 

Bayes. Gupta and Liang (1986b, 1988) have also studied some other empirical Bayes 

selection rules, in which they assumed that the form of the prior distributions is known 

but the distributions depend on certain unknown hyperparameters. Such approach is 

therefore referred to as parametric empirical Bayes. 



In this paper, we are concerned with the problem of selecting good negative binomial 

populations with respect to a standard or a control through the nonparametric empirical 

Baycs approach. The framework of the empirical Bayes selection problem is formulated 

in Section 2. Monotone empirical Bayes selection rules are proposed in Section 3. The 

monotone empirical Bayes selection rules are derived based on certain monotone empirical 

Bayes estimators of the posterior means of the concerned parameters which are also derived 

in Section 3. Asymptotic optimality properties of the monotone empirical Bayes estimators 

and the monotone empirical Bayes selection rules are studied in Section 4 and Section 5, 

respectively. 

2. Formulation of the Empirical Bayes Approach 

Consider A; + 1 independent negative binomial populations TT,, i = 0,1,...,it. For 

each I, t = 0,1,..., fc, let pi denote the probability of success for each trial in TT,- and let 

Xi denote the number of successes before attaining the rth failure in TTJ. We assume that 

the trials for each TT,- are independent, t = 0,1,..., A;. Then, conditional on p,-, Xi\pi has a 

negative binomial distribution with probability function fi{x\pi) of the form 

/.(^|P.)= ("^^^^ JP.-(l-p.r> x = 0,l,2,... (2.1) 

Let TTo be the control population. For each i — 1,..,, fc, population TT,- is said to be good 

if Pi > po and to be bad if p, < po, where the control parameter po is either known or 

unknown. Our goal is to derive empirical Bayes rules to select all good populations and 

exclude all bad populations. 

When the control parameter po is known, the empirical Bayes framework can be 

formulated as follows: 



(1) Let n = {p|p = (pi,... ,pfc), Pi € (0,1) for t = 1,..., A;} be the parameter space. For 

each p G n, define j4(p) = {i\pi > po} and 5(p) = {i\pi < po}- That is, A{p){B{p)) 

is the set of indices of good (bad) populations. 

(2) Let A — {a\a C {1,2,..., A;}} be the action space. When action a is taken, it means 

that population TT^ is selected as a good population if tea and excluded as a bad 

population if t ^ a. 

(3) For each (fixed) parameter p and action a, the loss function L(p, o) is defined as: 

L{s,a)=     Y.    (P«-Po)+     Y^    (Po-Pi), (2.2) 
teA(p)\a «ea\A(p) 

where the first summation is the loss due to not selecting some good populations and 

the second summation is the loss due to selecting some bad populations. 

k 
(4) Let dG(p) = n (iGi{pi) be the prior distribution on the parameter space fl, where 

Gi{-) are unknown for all t = 1,..., A;. 

(5) For each i, i — 1,..., k, let [Xij, Pij), j = 1,2,..., n, be independent random vectors 

associated with population TTI, where Xij is observable but P,j is not observable. P,y 

has prior distribution G,-. Conditional on P,y = p,j, Xtj|p,y has a negative binomial 

distribution with parameters r and pij. Let the jth. stage observations be denoted by 

A'j. That is, A'j (A'lj, .V-2j,... ,X^fcj). From the assumptions, Xi,X2,... X„, are 

mutually independent and identically distributed. 

(6) Let Xn+i = X = (Xi,...,Xfc) denote the present observation.  Conditional on p = 

k 
{Piy-iPk), X has a joint probability function f{x\p) = H fi{^i\Pi)^ where x = 

(xi,... ,Xfc) and where fi{xi\pi) is the negative binomial probability function given in 

(2.1) for each I = 1,..., A;. 

3 



Finally, since we are interested in Bayes rules, we can restrict our attention to the 

nonrandomized selection rules. 

(7)  Let D = {d\d :    X —> >J, being measurable} be the set of nonrandomized selection 

k 

rules, where X =  H {0)1,2,...} is the sample space.   For each d G D, let r{G,d) 
t=i 

denote the associated Bayes risk. Then r[G) = inf r{G,d) is the minimum Bayes risk 

and a rule, say do, is called a Bayes selection rule if r[G,dG) = ^IG). 

When the control parameter po is unknown, the indices in the associated notations 

should begin at 0 instead of at 1. In the sequel, (0) will be used to show this additional 

fact. 

We now consider decision rules rf„ (x; Xi,..., X„) whose form depends on the present 

observation x and the n past data (Xi,..., X„) at hand. Let r{G, d„) denote the overall 

Bayes risk associated with the selection rule dn{x;Xi,...,X„). That is, 

riG,dn) =^E f L{s,dn{x;Xi,...,Xn))fix\s)dG{s) (2.3) 

where   the   expectation   E   is   taken   with   respect   to   (Xi,... ,X„).      For   simplicity, 

rfn(?; Xi,..., Xn) will be denoted by <i„(x). 

Definition 2.1.    A sequence of selection rules {dn{x)}^^i is said to be asymptotically 

optimal (a.o.) relative to the prior distribution G if r{G,dn) —> r{G) as n —v oo. 

For constructing a sequence of a.o. empirical Bayes rules, we first need to find the min- 

imum Bayes risk and the associated Bayes rule do- From (2.2), the Bayes risk associated 

with the selection rule d is: 

r{G,d)=Y,   Y.   f  (Po-Pi)fi¥\s)dG{p) + C 
xex.e<i(x)-'" 

Yl     H   [Po-<Pi{xi)]f{x) + C if Po is known, (2.4) 
xer ied{x) 

H     Yl   [<Po{xo) - 'Pi{xi)]f{x) + C    if Po is unknown, 
xer tGd(x) 
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k 
where f{x)=   JJ  fi{xi), m = 0(1) if po is unknown (known), 

i—m 

M^i) = I' fi{xi\p)dG,{p) = (^^'+_" ~ ^) £ p=='(i - pYdGiip) 

= I3{xi)hi{xi), 

hAx- + 1) 
^*(^'^ "^    \ ]   \       ( "^ot^ that 0 < 'Pi{xi) < 1), 

k 

*^ = E E / (P« - Po)/(po,i)(Pi)/(5b)^G(p) 

and /A(-) is the indicator function of the set A. 

Note that in (2.4), C is a constant and does not affect the determination of the Bayes 

rule. Thus, the nonrandomized selection rule da can be obtained as follows: 

dG{x) = {i\AiG{x) < 0}, (2.5) 

where 

A,c(x) = |^V'';^''*\    ^    ■f''°   •'^T''' (2.6) ['Po{xo) - (pi[Xi}    It Po  IS unknown. ^     '' 

Now, for each t = (O), 1,..., A;, based on the past data Xn,..., X.n, and the present 

observation x,-, let (pin{xi) = <pin{xi; X,i,... ,X,n) be an estimator of tpi{xi), and let 

;,,  Ain(a:) = (^° ~^*"(^*^ ^^ ^o   is known, 
\'Pon{xo) - tPin{xi)    if po   is unknown. *■ * ■' 

We then define an empirical Bayes selection rule dn{x-Xi,..., X„) = d„(x) as follows: 

dn{x) = {i\Ain{x) < 0}. (2.8) 

li (Pin{x) —V <pi[x) for all X = 0,1,2,... and i = (0), 1,..., A;, where "^" means 

p 
convcrgoncc in probability, then A,n(x) —> A,G(5) for all x G X. Therefore, from Corol- 

lary 2 of Robbins (1964), it follows that r{G,dn) -^ r{G) as n ^ oo. So, the sequence of 



empirical Bayes selection rules {d„(i)} defined in (2.8) is asymptotically optimal for our 

selection problem. Hence, in the following, we have only to find sequences of estimators 

{(pin{x)}, i = (0), 1,... ,/c, possessing the above mentioned convergence property. 

3. The Proposed Empirical Bayes Selection Rules 

Before we proceed to construct empirical Bayes estimators {(pin{x)}, we first investi- 

gate some properties of the Bayes selecting rule da defined in (2.5) and (2.6). 

Definition 3.1. An estimator ip[-) is called a monotone estimator if ip(x) is an increasing 

function of x. 

Note that for each i = (O), 1,..., A;, ^,(x) = ^'h^u)^ ■ Straight computations lead to 

the fact that ^,(x) is an increasing function of x = 0,1,2... Also, note that v^i(x) is the 

posterior mean of p,- given Xi = x, and it is the Bayes estimator of pi given X,- = x for 

squared error loss. 

Let x,y e X such that x,- < j/,- for t = (0), 1,..., A;. 

Definition 3.2. 

a) When the control parameter po is known, a selection rule d is said to be monotone if 

rf(x)Crf(y). ■■'■.■■ >>^ 

b) When the control parameter po is unknown, a selection rule d is said to be monotone 

if the following two conditions are satisfied: 

(bl)  If xo = j/o, then d(x) C d(y). 

(b2)  If xo < j/o and x,- = y,- for all t = 1,..., k, then d{x) D d{y). 

By the monotone property of the Bayes estimators ipi{x), i = (0), 1,..., A;, one can 

see that the Bayes selection rule do is a monotone selection rule for both cases, where the 

control parameter po is either known or unknown. 
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Under the squared error loss, the problem of estimating the probabiltiy of success in 

a negative binomial distribution is a monotone estimation problem. By Theorem 8.7 of 

Berger (1985), for a monotone estimation problem, the class of monotone estimators form 

an essentially complete class. Also, for the present selection problem, under the linear loss 

given in (2.2), the problem is a monotone decision problem. Again, from Berger (1985), 

the class of monotone selection rules form an essentially complete class. Now, one can see 

that if the estimators (pin{x), i — (0),1,..., A;, are monotone, then the empirical Bayes 

selection rule given in (2.7) and (2.8) is also monotone. From these considerations, it is 

reasonable to require that the concerned estimators {(pin{x)} possess the above-mentioned 

monotone property. 

Lin (1972) studied some empirical Bayes estimation problems for a class of discrete 

exponential family distributions which include the negative binomial distributions as a 

special case. Though, the estimation procedure he proposed is asymptotically optimal, the 

proposed estimator does not possess the monotone property. Recently, Liang (1988) stud- 

ied empirical Bayes test for the class of discrete exponential family distributions. Liang 

(1988) proposed a monotone empirical Bayes estimator for the corresponding Bayes esti- 

mator. Based on that monotone empirical Bayes estimator, the empirical Bayes test which 

he proposed is monotone. Here, we use this idea of Liang (1988) with some modification 

since one can obtain more information about the interesting parameter p, the probability 

of success, for the underlying negative binomial distribution. 



The Proposed Monotone Empirical Bayes Selection Rules 

Let Fi{x) denote the marginal distribution function of the random variable X^. That 

is,. 
Z X 

^t(a;) = X]^*(y) = Zl'^(y)'^'(y)'^ = 0'i'2---. (3-1) 
y=o y=0 

where 0{y) — ("^^^Y^)) ^"^ ^iiv) — /o P^i^ ~ PY^^i{p)^ which is decreasing in y.  The 

form of (3.1) will be used to construct our empirical Bayes estimators. 

For each I = (0), 1,..., fc, based on the past data Xii,..., X,>i, let 

fin{x) = l-J2h^}i^ij) (3.2) 
it 

anc 

Mx) = |f (3.3) 

for I = 0,1,2.... 

In view of the decreasing property of the function /i,(t/), it is desirable that the 

corresponding estimator possess the same property. To meet this requirement, we let 

{^ini^)}T=o be the antitonic regression of {/i,n(2;)}^o with weight {/3(x)}^o- Then, let 

F*M = ^f:M, (3.4) 

where 

/^(y)=/9(y)A*„(y),y=: 0,1,2.... (3.5) 

Note that /i,*„(2) is nonincreasing in x, and /i,*„(x) = 0 if z > max(X,i,... ,X,„) for 

each n and each i. By the decreasing property of the function /i,(x) in x, from Barlow, et 

al (1972), 

F*M > F.„(x) (3.6) 



and ■'.':-■..." 

;- sup \F*^{x) - Fi{x)\ < sup |F»n(x) - Fi{x)\ (3.7) 
x>0 x>0 

where Fin{x)  is the empirical distribution function based on Xii,...,Xin.    That is, 

^     n [x] 

Fin{x)  =   - Yl I[o,x]{^ij)  =   Yl P{y)hin{y), where [i] denotes the largest integer not 

greater than x. 

Now, for each X = 0,1,2,..., max(Xii,..., X,n) - 1, define 

Note that by the nonincreasing property of the antitonic estimators /i,*„(x), 0 < 

'Pinix) < 1 for X = 0, l,...,max(X,i,... ,X,>j) — 1. However, <pin{x) does not possess 

the monotone property. A smoothed version of <pin{x), which possesses the monotone 

property is given as follows:   Let 

{max <pir, (y) if y < max(X,i,..., Xi„) - 1, 

'-' (3.9) 
•Pin(max(Xii,..., X,n) - 1)    if y > max(X.i,..., X.n) - 1. 

':   From (3.9), it is easy to see that V^,*„(x) possesses the monotone property.  Now, for 

each X G X, define 

X'PinM-'Pini^i)    ifPo   is unknown. ^       ^ 

We then popose a montone empirical Bayes selection rule, say dj^, as follows: 

:      <(x) = {t|A:„(x) < 0}. (3.11) 

9 



Asymptotic Optimality of the Selection Rules {d'^} 

As mentioned above, to prove the asymptotic optimality of the sequence of empirical 

p 
Bayes selection rules {<i* }, it suffices to prove that V5,*„(x) —>^ ^i{^) for all i = 0,1,2,..., 

and I = (0), 1,...,/c. 

For each x = 0,1,2,..., let f be a positive number small enough so that t ~\- <Pi{x) < I 

and <pi{x) — f > 0. We need to prove that 

P{\<p*^{x) - <pi{x)\ > t} ^ 0 a.s n ^ oo. 

Now, 
P{\<P*in{x) - <Piix)\ > t} 

= P{^*in{^) - ^.(^) < ~t} + P{<P*n{^) - Piix) > t}. 

By the definition of <p'^^{x), V5,*„(a:) > i^,„(x). Thus, 

We have 

(3.12) 

Pi'Pki^) - M^) <-t} 

< Piipinix) - <pi{x) < -t} 

= P{<pin{x) - (pi{x) < -t, and max(X.i,..., X,„) < x} '     r    (3.13) 

+ P{<Pin{x) - ifiix) < -t, and max(X,i,..., Xin) > x}. 

P{^in{x) - <Pi{x) < -t and max(Xa,.. • ,Xi„) < x} < [F,(x)]" 

which tends to 0 as n —> oo, since 0 < Fi{x) < 1 for all x. 

Also, note that h*Jx) > 0 as x <  max(Xii,..., Xin). Let p(x, t) = ^jf^ - ^^^(^ 

and q{x,t) = g(A       •   Note that p{x,t) > 0 since t is a positive number such that 

m 



(Pi{x) - f > 0. From (3.1), (3.4), (3.5), (3.7) and (3.8), we have: 

Pi'Pinix] - <pi{x) < -t and max(X,i,..., X,„) > x} 

< P{hUx + 1) - hUx){<pi{x) -t]<0} 

= P{/*,(x + l)-/i;(x)p(x,0<0} ^ (3.14) 

= P{F*^{x + 1) - F:^{X)[1 + p{x, t)] + F:^{X- 1)P{X, t) < 0} 

= P{[i^;(x + 1) - Fi(x + 1)] - [i^;(x) - F.(x)][l + p(x,0] 

+ [i^;(x - 1) - Fi{x - l)]pix,t) < -qix,t)} 

:       <P{i^;(x + l)-F,(x+l)<-^} 

+ P(^;(x)-P.(x)>-^^il^}    ' 

+ p(^;(x-i)-P.(x-i)<-^} 

< 3P{sup|i^;(y) - P4y)| > -ll^ll—} 
y>0 3[l+p(x,i)] 

'       <3P{sup|P,4y)-P4y)|>-^feil_} 
y>0 3[l+p(x,f)] 

which tends to zero as n tends to infinity, by the Glivenko-Cantelli Theorem. 

Similarly, ' 

i P{'P:M - <P^{x) > t} 

=-flv?in(^)-^1(2;) > i and max(X,i,...,Xtn) < x} (3.15) 

+ Pi'Pinix) - 'Piix) > t and max(Xii, • • •, ^in) > x} 

where 

P{(p^^[x) — <Pi(x) > t and max(Xti,..., X,„) < x} -+ 0 as n —>• 00, 

11 



and by the fact that filx) > 'Pi{y) for all y < x, and the definition of <Pi„(i), 

P{(pi^{x) - (pi{x) > t and max(Xii,..., X,n) > x} 

= P{(pin{y) — fPiix) > t for some y < x and inax(X,i,... ,Xi„) > x} 

< P{'PiM - <Pi{y) > t for some y<x,f*M> 0} I (3.16) 

< P{f:^{y + 1) - f:Mfcil[^,(y) + t]>0 for some y < x} 

= P{{F:Ay + 1) - F*M] - [f;;(y) - i^;(y - i)]^l^^[^.(y) + f] > o for some y < x} 

< 3P{sup|Fi„(y  -F.- y    > mm ■ g.      . f ^'^     ■ }, 

which tends to zero as n tends to infinity. 

Based on the above discussions, we have shown that V',*„(x) —>^ <Pi{x) for each x = 

0,1,... and each i = (0), 1,..., A;. Therefore, the sequence of empirical Bayes selection 

rules {dj^} is asymptotically optimal. 

4. Asymptotic Optimality of the Monotone Estimators 

In this section, we study the asymptotic optimality property of the estimators V5^„(x). 

It is known that under the squared error loss, (pi{x) is the Bayes estimator of p, given 

X,- = X. The associated Bayes risk is 

Ri{Gi) = E[{Pi-<pi{Xi))^]. (4.1) 

Let V'»(-) be any estimator of p,- with the associated Bayes risk Ri{Gi,rl)i). Then 

Ri{Gi,xl;i)-Ri{Gi) = E[{MXi)-<Pi{Xi)f]. (4.2) 

Let {4>in{^', Xii,..., Xin) = ipin{x)} be a sequence of empirical Bayes estimators based 

on (x;Xii,...,X,n). 



Definition 4.1. 

a) A sequence of empirical Bayes estimators {^in}^i is said to be asymptotically opti- 

mal relative to the prior distribution G if Ri{Gi, V'tVi) —*■ Ri{Gi) as n —> oo. 

b) A sequence of empirical Bayes estimators {tpin}^=i is said to be asymptotically opti- 

mal at least of order Q:„ relative to the prior distribution Gi if Ri{Gi, tpin) — Ri{Gi) < 

0(a„) as n ^^ oo, where {on} is a sequence of positive values such that   lim a^ = 0. 
n—♦oo 

p 
From Section 3, V?t*n(^) —^ Pi{^) for all x = 0,1,2,.... Thus, {<p,*„}^i is asymp- 

totically optimal. However, the usefulness of empirical Bayes estimators in practical ap- 

plications clearly depends on the convergence rates with which the risks for the successive 

estimation problems approach the optimal Bayes risk. Hence in the following, we study 

the convergence rates of the sequence of empirical Bayes estimators {<pj'„}. 

For 0 < e < 1, let 

Ai{e) = {x\fi{x) < e}, Bi{e) = {x\fi{x) > e}. (4.3) 

Assumption A: 

Al.    There exist f,e(0, l] and a positive constant c, such that P{Ai{e)) < Cie^' for all 

eG(0,l). 

A2.   There exists a positive integer Ni such that fi{x) is decreasing in x for x > AT,-. 

Remark 4.1.:   An example such that Assumption A holds true is given in Lin (1972). 

We have the following theorem. - .. 

Theorem 4.1, Let {'P^n}n'=i ^® ^^® sequence of empirical Bayes estimators defined 

in (3.9). Then, under Assumption A, 

Ri{Gi,<p*^) - Ri{Gi) < O(n-^'/(2+*0). 

13 



The proof of Theorem 4.1 can be obtained based on the following arguments. 

For the empirical Bayes estimator v?^^, straight computation leads to 

<x> 

= E^[(^.*n(^)-^.(x))'|X, = a;]/.(x) (4.4) 
1=0 

where <5„ = n~°" and a, = K^. 

Lemma 4.1.   Under Assumption A, 

E     E[{^:M - ^i{x))'\X, = x]f,{x) < 0(n-*^/(2+*')). 

Proof:   Note that 0 < ^,*„(x), <pt{x) < 1. Thus, 

E    ^[(^.*n(^)-^.W)'|^. = x]/,(x) 
ieA.(<s„) 

xeAi(5„) 

= P(Ai(<5n)) 

< Cin~°"^'   (by the definition of Ai{5n) and Assumption Al) 

= 0(n-*'/(2+tO). 

Thus, it suffices to study the asymptotic behavior of     X)     £^[(v?^„(x)-^,(x))^|Xi = 
zeB.(5„) 

x]/i(x). Now, for each X G B,((5n), 

i;[(vp*„(x)-^,(x))2|x, = x] 

= ^[(v:':.(x)-vP.(x))2/,„(x)|X.- = x] 

+ E[{<P:M - ^.■(x))'(l - /.4^))l^i = ^], (4.5) 
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where ;. 

j.  f„^_ /l    if/.n(x)>0, 

and fin{x) is as defined in (3.2). 

Lemma 4.2.  For x e 5,((5„), 

^[(^*„(x) - v:>i(x))2(l - Ii4x))\Xi = x] < 0(n-*^/(2+*.)). 

Proof: 
E[{<p*M - 'Pi{^))\i - Iin{x))\Xi = X] ,        . 

<P{/,n(x)=0} 

= P{fi4x) - fi[x) < -A(x)} 

< exp{-2n/?(x)}   (by Theorem 1 of HoefFding (1963)) 

< exp{-2n(5^}   (since x e B,(<5n)) 

=  exp{-n*'/(2+'.)} 

< 0(n-''/(2+tO). 

Remark 4.2.:   Note that in Lemma 4.2, the upper bound is independent of x for all x G 

Next, a straight computation leads to: 

E[{ip*^[x)-^i[x)Ylir.[x)\X, = x\ 

= ['     2SP{^:M ~ f^i^) < ~^Jin{x) > 0}ds (4.7) 
Jo 

l-l-(pi{x) 

+   / 2sP{ip*Jx) - <Pi{x)  > Sjir,{x)  > 0}ds. 
Jo 
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Lemma 4.3.   a) For x £  Bi{6n), and s 6 (0, v?,(x)), 

P{'P*M - <pi{x) < -s and fin{x) > 0} < 3d. exp{-2n[    /^'"'/^     J^} 

for some positive constant di, where p(x,s)   =   -^'l"^.^/^ -  ^^if^/^   >   0 and q{x,s)   - 

a/?(z + l)/,(x)        Q , \, 

b) For X G Bi(<5„), 

/•ip.(z) 

/ 25P{^*„(x) - <pi{x) < -s and /i„(x) > 0}ds < 0(n-**/(2+*.)) 

and the upper bound is independent of x for all x 6 jB,((5n). 

Proof: a) First, it is trivial that p{x,s) > 0 and q{x,s) > 0. Next, that /,n(x) > 0 

and from the definitions of //^(x) and /i,*„(x), it follows that /,*„(x) > 0 and /i,*„(x) > 0. 

-^Iso, V2,*„(x) > ^,„(x), by the definition of (pi^ix). Then, following (3.14), we obtain: For 

X G B,(<5n) and 5 G (0,v3.(x)), 

■P{V3i„(a:) - ^i(x) < -s and /,„(x) > 0} 

<P{<Pin{x)-<Pi{x)<-sandfir,{x)>0} 

< P{hUx + 1) - h*Jx)[^i{x) -s]<0} 

for some positive constant d,-, where the last inequality follows from Lemma 2.1 of Schuster 

(1968). 
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b) By using the fact that 0 <   ^^^J^ < 1   and   ^^±^ < r for all x > 0, we have 

1 + p{x, s) < 1 + r. Then, from the result of part a) of this Lemma, we obtain 

'<Pi(.x) r<Pi(x) 

/ 2sP{'p*M - 'Pi{^) < -s, fin{x) > 0}di 
Jo 

</ 6d.sexv{-^A  ''\^/^]^}ds 
Jo y 1 + r 

<i3.5..(i±;i!^x   ' 
/?2(x + l) nffix) 

^2_l < U.5di{l + r)^:^   (since x e £i((5„)) and therefore,/,• (i) > (5„) 

Note this upper bound is independent of x e B,((5„). 

By Assumption A2, /,(x) is decreasing in x for all x > iV,. In the following, we only 

consider the case where n is large enough such that <5„ = n~2+«7 < /,(y) for all y < Ni. 

Thus as a; e B,(<5„), then /i(y) > 6n for all y < x (this holds true for either x < Ni or 

X > Ni). Therefore, analogous to (3.16), by the definition of V^i„(x), we obtain: 

FoTse{0,l-<pi{x)), 

Pi'Pini^) - <Pi{^) > S, fin{x) > 0} 

= P{'Pin{y) - <Pi{x) > s for some y < x,/i„(x) > 0} 

. < 3P{sup \F:M - Fr{y)\ > - miniy(y)} 
y>0 ySx 

< 3di exp{-2n[- minF(y)]^} (by Lemma 2.1 of Schuster (1968)), (4.8) 
y<x 

where 

\_My + i)-My)%?-[My) + s] 

^'^~ 3(l + ^(v..(y) + .)] 

17 



<^^ (4.9) 
- 3[1 + r] .. . ^     ' 

-s6n 

- 3[l +"r]    ^ ^^"^^ •^*^^^ - *^"^ 

<0. 

Lemma 4.4. For n sufficiently large, and x G Bi{6n), 

f       '     2sP{<p*M - <Pi{^) > sJ^n{x) > 0}ds < C»(n-''/(2+*.)). 

Proof: From (4.8) and (4.9), for n sufficiently large, as x e Bi{6n), 

rl-(pi{x) 

/ 25P{^*„ {x) - ,pi {x) > S, fin (X) > 0}ds 
Jo 

= 0(n-**/(2+*.)). 

From Lemmas 4.2, 4.3, 4.4 and (4.7), we have:   For x G Bi[8n), 

m'PiM - 'Pi{x)Y\Xi = x] < 0(n-*-/(2+*')). 

This upper bound is independent of x e Bi{6n). Therefore, we conclude that 

53     ^[(^*nW-^t(x))'|X. = x]/i(x)<0(n-*-/(=^+'')). (4.10) 

Then, Lemma 4.1, (4.4) and (4.10) together complete the proof of Theorem 4.1. 
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5. Asymptotic Optimality of the Empirical Bayes Selection Rules 

In this section, we study the asymptotic optimality of the sequence of empirical Bayes 

selection rules {rf*}. 

Let {d„}^i be a sequence of empirical Bayes selection rules relative to the prior 

distribution G. Let r[G,dn) denote the expected Bayes risk of the selection rule dn. Since 

the Bayes rule dc achieves the minimum Bayes risk r(G),  r{G,dn) - r[G)  > 0 for all 

n = 1,2, Thus, the nonnegative difference r{G,dn) — r{G) is used as a measure of the 

optimality of the sequence of empirical Bayes selection rules {dn}. 

Definition 5.1. The sequence of empirical Bayes selection rules {d„}^j is said to be 

asymptotically optimal at least of order a„ relative to the prior distribution G is r{G, dn) — 

r(G) < 0[an) as n —> oo, where {ccn} is a sequence of positive numbers such that   lim 
n—»oo 

ttn = 0. 

In the following, we evaluate the asymptotic behavior of the sequence of empirical 

Bayes rules {rf* } proposed in Section 3, according to whether the control parameter po is 

known or unknown. 

Convergence Rates of {(/*} for pn Known Case 

For each t = 1,..., fc, let Si = {x\(pi{x) < po} and Ti = {x\ipi{x) > po}. Define 

_ fminr,-    ifTi^cf), ,     . 
V   ^-\oo if7\ = <^, ^^-^^ 

and 

/ max Si    if Si ^ </>,        . ' 
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By the increasing property of (pi{x) with respect to the variable x = 0,1,...,m, < M,; 

also rrii < Mi if Ti ^ 4>. Furthermore, 

{x<mi    iff (pi(i) < po;   and .     . 
\y>Mi    iff^,(y)>po. ^""-^^ 

Note that when Ti = (f), it meas that in terms of its quality, the population TT,- is 

bad. Also, for 5,- = (f), it means that in terms of its quality population TT,- is as good as 

the control. We exclude these extreme cases, in the following, and study the asymptotic 

behavior of the sequence of empirical Bayes selection rules {<i* } under Assumption B. 

Assumption B:   T,- 7^ 0 and 5,- 7^ ^ for alii = 1,..., fc. 

Now, for the empirical Bayes selection rule d^, a direct computation leads to the 

following: 

0<r(G,<)-r(G) 
A: 

= X;A(G',<), (5.4) 

where 

A(G,<) = X^[po-^i(x)]PK„(x) > po}fi{x)+  J2 [^iW -Po]P{^*„(x) < po}/.(x). 
1=0 x=Mi 

:     (5.5) 

By the nondecreasing property of the estimator v?,*„, we have 

f P{'Pin{^) >Po}< P{<Pini"^i) > Po}    for all X < m.-, and 

\P{'P*iM<Po}<P{<P*niMi)<Po}    for all y>M.-. ^^'^^ 

Thus, from (5.5) and (5.6), 

A(G,0 < P{<pUm^) > Po}bii + P{<PU^) < Po}bi2, (5.7) 
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rni oo 

where 6.1 = }J [po-(p,(x)]/,(x), and 6,-2 =   E   [<Pi{x)-Po]fi{x). Note that 0 < 6.1, 6,-2 < 
1=0 i=M. 

1. 

Now, 

P{<pUMi)<po} 

= P{V?*„(Mi) < po, inax(X.i,..., X.>,) < MJ 

+ ^{^in(M) < Po, max(Xa,..., Xi„) > Mi} (5.8) 

< [Fi(M,)]'^ + P{^*JM.) < PO, max(Xa,..., X.„) > M.}. 

Analogous to Lemma 4.3. a), we can obtain 

P{(p*^{Mi) < Po and max {Xn,...,X,„) > M.} 

< P{h*^{Mi + 1) < h*^{Mi)po and max(X.i,..., Xin) > Mi} 

<3d,exp{-^nA2(M,,po)/[l + ^^^^±llpo]2}, (5.9) 

where A(M.-,po) = /,(M, + 1) - /.(M.) ^gf^Po > 0. 

From (5.8) and (5.9), we have 

P{'P*in{Mi) < Po} < 0{exp{-Tiin)) (5.10) 

w 

Also, 

P{^in{mi) > Po} 

= Pi'Pini^i) > Po,max(Xii,...,Xin) < rrii} 

+ Pifini^i) > Po, max(X,i,..., Xin) > rrii} * 

< [Fiimi]]"- + P{<Pin{m,) > po,max(Xii.. .X.g > mj. (5.11) 
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Analogous to (3.16), we obtain 

P{(p,*„(mi) > po, max(X,i... Xi„) > m,} 

= P{(pin{y) > Po for some y < m,-,max(X,i ... Xi„) > m,} 

< 3P{sup|C - F.{x]\ > min -J^i^l^^} 
x>o y<-. 3[l + ^^po] 

< Sdi exp ■^ mm 
9   y<mi 

2 

|A(y,po)| 
(5.12) 

where A(y,po) = /.(y + 1) - fi{y)^^f^Po- Note that A(y,po) < 0 for all y < m,-. 

Thus, 

^{v?.-n('^.) > Po} < 0(exp{-ri2n}), (5.13) 

wh„e ... = min (l mini ^^^} ,£„^. 

Let Ti = min(r,i,r,i), and r = min(ri,. ..,Tk). Note that r > 0, since r,- > 0 for each 

i — 1,... ,k. From the above results the following theorem follows: 

Theorem 5.1.   Under Assumption B, we have: 

a) Di{G, O < 0(exp(-rin)) for each t" = 1... A:, and 

b) r(G,d;)-r(G)<0(exp(-rn)). 

Convergence Rates of -Cd*"}- for Pn Unknown Case 

When the parameter po is unknown, the convergence rates of the sequence of empirical 

Bayes selection rules {c?* }^i is evaluated under Assumption A which is given in Section 4. 

Without loss of generality, in this section, we assume that CQ = ci = ... = c^ = c > 0 

and to = ti = ... = tk = t E [0,1], where the parameters c,-, i,, i = 0,1.. .k are given in 

Assumption Al.        .      ^■ 
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For each t = 1,..., fc, let 

Si = {{xo,Xi)\^i[xi) < <po{xo)},Ti = {{xo,Xi)\^i[xi) > (po(a;o)} 

Ein'^^ {{xo,Xi)\\(pi{xi) ~(po{xo)\<£n}, and 

Ein = {{xo,Xi)\\(pi{xi) - <po{xo)\ > £„} where e:„ > 0. 

Thus, 

0<r(G,<)-r(G) 
K 

EA*(^'<)' (5.14) 
t=i 

where 

DnG,dl)=      Yl     Qi{^o,Xi)+      Yl     M^o,Xi) 
{xo,Xi)ETi (xo,Xi)eSi 

=    Yl   Qi{=^o,Xi)+ Y Qi{xo,Xi)+ Y Qi{xo,Xi) 

+ Y Qi{xo,Xi)+    - Y Qi{xo,Xi) 

+    Y   Ri{^o,Xi)+ Y Ri{xo,Xi)+ Y Ri{xo,Xi) 
SiriEi^ 5.nEi=„nAo(<5„)nAi(fi„) Sin£;f^nAo(5„)ns<(5„) 

+ Jl Ri{xo,Xi)+ Y Ri{^o,x^), (5.15) 
5.n£;,?^nBo(5n)nyi.(5„) 5in£;?^nBo(5„)nB.(5„) 

where 

r Q^{xo,Xi) = [<pi{x^) - M^0)]P{<P*Jxi)  < <P*On{^o)}fi{xi)foixo), 

\ Ri{xo,Xi) = [^o(a:o) - <Pi{xi)]P{^*^{xi) > V^Sn(^o)}/.(x.)/o(xo), ^^-^^^ 

and the notation Yl means that the summation is computed over the set A. 
A 

Careful examination leads to the following results: 

Y     Qi{^0,Xi)<O{£n),     Y     Ri{^0,Xi)<O{Sr,), 
TinEi„ SiHEin 
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r.nEf„nAo(fi„)nA.(fi„) 

Y^ Ri{xo,x,)<0{6l'), (5.17) 
s.n£;?^nAo(5„)nAi(5„) 

Y Q.(xo,x.)<0(6^), 

Y Ri{xo,xi)<0{6i), 
SinE9^nAo{6r,)nBi{Sn) 

Yl Qi{xo,xi)<0{6i), and 
TinE9^nBo{S„)nAi{Sr,) 

Y Ri{xo,x,)<0{6i). 
5.ns«„nBo(fi„)nAi(5„) 

Now, for {xo,Xi)  e Ti D E^^ n 5o(<5n) n Bv((5„),   /.(x.)  > ^„, /o(a:o)  > <5n, and e„  < 

(Pi{xi) - (po{xo) < 1. Thus, 

P{^*„(x,) < ^SJxo)} 

= ^{['Pinl^t) - ^ii^i)] - bSn(^o) - <Po(a:o)] < «Po(xo) - V5.(a;.)} (5.18) 

< PirU^i) - ^.(x.) < -y} + Pi'PonM - M^o) > y}. 

Now, 

= P{<P:n{^i) - 'Pii^i) < -y,/.n(xO = 0} + PMn(x.) - ipi{Xi) < -'f,fin{xi) > 0}, 
where 

P{'P*in{^<) - 'Pii^i) < -'-fjinixi) = 0} 

<P{fin{xi)=0} 

< exp{-2n<5^}( since x,- G Bi{6„,)] and see Lemma 4.2), 

and 

.      Pi'Pini^i) - fiixi) < -y,/m(^.) > 0} 

< Q(exp{—       /^ "\2-^^' (T^^ proof is analogous to that of Lemma 4.3.a). 
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Therefore, 

i'KnW - 'Piix.) < -f} < O{exp{-Y0^}). (5.19) 

Next, under Assumption A2, along the line of (4.8) and the argument given there, for 

n sufficiently large, we have 

P{^S„(xo)-v^o(xo)>^}<0(exp{-^^^iS_}). (5.20) 

Note that the convergence rates obtained at (5.19) and (5.20) are independent of 

{xo,Xi) e Ti n £?^ n 5o(<5„) n Bi{8n). Therefore, from (5.16) and (5.18), 

En F  f) 
g,(xo,x,) < 0(exp{-        -;    }). (5.21) 

T.nE?„nBo(5n)nB.(5„) \    ^   ) 

Similarly, we can also conclude that 

^ i?,(:ro,x,)<0(exp{--^fiS^}). (5.22) 
5.n£;?^nBo(fi„)nB.(5„) xo^i-t-r; 

By letting (5„ = [^^\yj')t "] ^^ ^^^ ^n = <5*, we have the following theorem. 

Theorem 5.2.   Under Assumption A, we have 

a) D*(G,cZ;) < 0(,5^) for t = 1,...,A;, and 

b) r(G,<)-r(G)<0(5*). 

Proof:   The proof follows directly from (5.14), (5.15), (5.17), (5.21) and (5.22). 
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